Blog ini non-partisan dan terbuka kepada semua tanpa mengira fahaman politik. Emel atau MMS ucapan / rayuan / keluhan / pengumuman anda ke tamanperpaduan.terusblog@blogger.com untuk tulisan anda tersiar di blog ini serta merta. Gambar juga boleh disertakan dan tertakluk kepada syarat.
Posting tidak sepatutnya akan dinyahsiarkan.

Sabtu, 23 Mei 2020

Self-XSS - Self-XSS Attack Using Bit.Ly To Grab Cookies Tricking Users Into Running Malicious Code


Self-XSS attack using bit.ly to grab cookies tricking users into running malicious code

How it works?
Self-XSS is a social engineering attack used to gain control of victims' web accounts by tricking users into copying and pasting malicious content into their browsers. Since Web browser vendors and web sites have taken steps to mitigate this attack by blocking pasting javascript tag, I figure out a way of doing that using Bit.ly, so we can create a redirect pointing to "website.com/javascript:malicious_code". If the user is tricked to run the javascript code after "website.com/" the cookies of its authenticated/logged session of website.com will be sent to the attacker.


Features:
Port Forwarding using Ngrok and shortner using Bitly.com (Register for free)

Requirement
https://bitly.com account (Register for free)

Legal disclaimer:
Usage of Self-XSS for attacking targets without prior mutual consent is illegal. It's the end user's responsibility to obey all applicable local, state and federal laws. Developers assume no liability and are not responsible for any misuse or damage caused by this program

Usage:
git clone https://github.com/thelinuxchoice/self-xss
cd self-xss
bash self-xss.sh

Author: https://github.com/thelinuxchoice/self-xss
Twitter: https://twitter.com/linux_choice




via KitPloit

Related news


  1. Libro De Hacking
  2. Informatico Hacker
  3. Hacking Cracking
  4. Como Aprender A Hackear Desde Cero
  5. Hacking Wifi Android
  6. Libros Para Aprender A Hackear
  7. Hacking System

Jumaat, 22 Mei 2020

Backtrack4



The Remote Exploit Development Team has just announced BackTrack 4 Beta. BackTrack is a Linux based LiveCD intended for security testing and we've been watching the project since the very early days. They say this new beta is both stable and usable. They've moved towards behaving like an actual distribution: it's based on Debian core, they use Ubuntu software, and they're running their own BackTrack repositories for future updates. There are a lot of new features, but the one we're most interested in is the built in Pico card support. You can use the FPGAs to generate rainbow tables and do lookups for things like WPA, GSM, and Bluetooth cracking. BackTrack ISO and VMWare images are available here.




Continue reading


ShellShock Payload Sample Linux.Bashlet



Someone kindly shared their sample of the shellshock malware described by the Malware Must die group - you can read their analysis here:

File: fu4k_2485040231A35B7A465361FAF92A512D
Size: 152
MD5: 2485040231A35B7A465361FAF92A512


VIrustotal

SHA256: e74b2ed6b8b005d6c2eea4c761a2565cde9aab81d5005ed86f45ebf5089add81
File name: trzA114.tmp
Detection ratio: 22 / 55
Analysis date: 2014-10-02 05:12:29 UTC ( 6 hours, 50 minutes ago )
Antivirus Result Update
Ad-Aware Linux.Backdoor.H 20141002
Avast ELF:Shellshock-A [Expl] 20141002
Avira Linux/Small.152.A 20141002
BitDefender Linux.Backdoor.H 20141002
DrWeb Linux.BackDoor.Shellshock.2 20141002
ESET-NOD32 Linux/Agent.AB 20141002
Emsisoft Linux.Backdoor.H (B) 20141002
F-Secure Linux.Backdoor.H 20141001
Fortinet Linux/Small.CU!tr 20141002
GData Linux.Backdoor.H 20141002
Ikarus Backdoor.Linux.Small 20141002
K7AntiVirus Trojan ( 0001140e1 ) 20141001
K7GW Trojan ( 0001140e1 ) 20141001
Kaspersky Backdoor.Linux.Small.cu 20141001
MicroWorld-eScan Linux.Backdoor.H 20141002
Qihoo-360 Trojan.Generic 20141002
Sophos Linux/Bdoor-BGG 20141002
Symantec Linux.Bashlet 20141002
Tencent Win32.Trojan.Gen.Vdat 20141002
TrendMicro ELF_BASHLET.A 20141002
TrendMicro-HouseCall ELF_BASHLET.A 20141002
nProtect Linux.Backdoor.H 20141001
Related links
  1. Hacking Ético
  2. Hacking Team
  3. Growth Hacking Barcelona
  4. Curso Completo De Hacking Ético
  5. Herramientas Hacking
  6. Hacking Pdf
  7. Cómo Se Escribe Hacker
  8. Escuela Travel Hacking
  9. Etica Hacker
  10. Hacker Blanco
  11. Kali Hacking
  12. Hacking Simulator
  13. El Mejor Hacker Del Mundo
  14. Hacking Kali Linux
  15. Hacking Libro
  16. Hacking 2019

Hackable - Secret Hacker | Vulnerable Web Application Server

Continue reading
  1. Hacking Growth Sean Ellis
  2. Hacking Articles
  3. Hardware Hacking
  4. Significado Hacker
  5. Hacking Apps
  6. Hacker Blanco
  7. Phishing Hacking
  8. Aprender Hacking
  9. Hacking Basico
  10. Hacking Simulator
  11. Hacking Tor Whatsapp
  12. Hacking Etico
  13. Herramientas De Seguridad Informatica

Khamis, 21 Mei 2020

DOWNLOAD BLACKMART ANDROID APP – DOWNLOAD PLAYSTORE PAID APPS FREE

Android made endless possibilities for everyone. It introduced a platform where are millions of apps that a user can download and buy depending on their needs. You're thinking about Google PlayStore, yes I am also talking about Google PlayStore. It's categorized app collection depending on every niche of life. Few of them are free and some of them are paid. Most of the paid apps are only charges small cost in between $2 to $8, but few apps are highly costly that make cost over $50 even, which is not possible for every user to buy and get benefit from it. So, here I am sharing a really useful app, that can make every Google PlayStore app for you to download it for free. You can download any paid app that may even cost about $50. It's totally free. Download blackmart Android app and download google play store paid apps freely.

DOWNLOAD BLACKMART ANDROID APP – DOWNLOAD PLAYSTORE PAID APPS FREE

  • It's extremely easy to use.
  • It has a Multilingual option for a global user experience.
  • The app doesn't ask for any payments.
  • Capable to download full of downloadable applications.
  • Super fast in downloading and installation.
Continue reading
  1. Nivel Basico
  2. Hacking Food
  3. El Mejor Hacker Del Mundo
  4. Hacking Traduccion
  5. Hacking Language
  6. Hacking News
  7. Growth Hacking Courses
  8. Bluetooth Hacking
  9. Python Desde 0 Hasta Hacking - Máster En Hacking Con Python
  10. Password Hacking

Structure Part I: The Basics

 

Today we are going to go through Structures from defining structures to using structures.
Structures are just a collection of different types under one roof (you can even put one type only!). So that means they give you flexibility of grouping different data types (like int, char, or even char[]) under one name.
So let us start with obviously defining a Structure. In `C` we declare a structure as simply as this:-
struct dob {
    int day;
    int month;
    int year;
};
1: In the above code segment struct is a keyword which defines structure.
2: Followed by struct keyword (dob) is the name of our structure.
3: Elements of struct are defined inside braces '{}' as we did (int day; etc).
4: After ending brace we place a terminator ';' to end the declaration.

So now you know how to define a structure but how to create its instances now?
To create a variable of our structure we just need to do this:
struct dob date;
This now declares date as a structure variable of type dob.
1: Here 'struct dob' is our above declared structure.
2: date is a variable of type dob.

So ok we have a structure and a variable of that type but how can i access its parts?
well we can access it and assign it so simply like this:-
date.day = 19;date.month = 10;date.year  = 1990;
Note here we use the dot (.) operator to access the fields (parts) of our structure.
ok everything looks nice so for but how in the world can i read data into this structure variable? Again no worries its again simple:-
scanf("%d", &date.day);scanf("%d", &date.month);
that was pretty easy but I was wondering how can i print its data?
Just do it like this:-
printf("Day: %d", date.day);printf("Month: %d",date.month);printf("Year: %d", date.year);
Again remember we use dot (.) operator to access members of a structure.
So we now know how to define and declare a structure, how to access its members, how to read data in it, and how to print data of a structure. Oh that was a tough job..!
Now let us put it together in a single C Program.
/***********************************************/
#include <stdio.h>
struct dob {
   int day;
   int month;
   int year;
};

int main(void) {
  struct dob date;
  date.day = 19;
  date.month = 10;
  date.year = 1990;

  printf("Day is : %d, Month is: %d, and Year is %d\n",
           date.day,date.month, date.year);

  printf("Enter Day, Month, and Year separated by spaces: ");
  scanf("%d %d %d", &date.day,&date.month,&date.year);
  printf("Your entered Date is: %d/%d/%d",
  date.day,date.month,date.year);

  return 0;
}
Output:
Day is : 19, Month is: 10, and Year is 1990
Enter Day, Month, and Year separated by spaces: 1 1 2014
Your entered Date is: 1/1/2014

More articles


PHoss: A Password Sniffer


"PHoss is a sniffer. A normal sniffer software is designed to find problems in data communication on the network. PHoss is designed to know some protocols which use (or may use) clear text passwords. Many protocols are designed to use secure authentication. For fallback they define a lowest level of authentication using clear text. Many companies use this lowest fallback definition as standard setting to make the product working in many environments." read more...

Download: http://www.phenoelit-us.org/phoss/download.html

Related news


  1. Herramientas De Seguridad Informatica
  2. Social Hacking
  3. Hacking Code
  4. Hacking Wallpaper
  5. Growth Hacking Marketing
  6. Fake Hacking
  7. Hacking Net
  8. Como Ser Hacker
  9. Libro Hacking Etico
  10. Elladodelmal
  11. Hacking Tor Whatsapp
  12. Hacking Background
  13. Hacking Udemy
  14. Hacking Y Forensic Desarrolle Sus Propias Herramientas En Python Pdf

Rabu, 20 Mei 2020

Top 10 Great Gifts For The Hacker In Your Life

Give gifts this holiday season that inspires your favorite hackers to make something great. Our ten top picks for gifts to make 'em smile are perfect for hackers of all styles, ages, and interests.
Holiday gift guides always struggle when faced with nailing down a list for hackers — that's because hackers are as diverse in their interests and fascinations as they are diverse in gender, color, size and everything else. Someone with a multi-focused set of curiosity and unique gifts for finding out what makes the crackable crack may seem like a daunting individual to stuff a stocking for … but don't fret. With a keen eye on the latest interests in hacker culture, we've got a gift guide that can make the hacker in your life smile as they enjoy using your gift to hack and explore throughout the coming year.
The Onion Pi-Iemhacker
Anonymity online: The Onion Pi
One of the most popular "snake oil" (fake) privacy gadgets is the so-called "Tor in a box" — a plug-and-play gadget that promises to make you anonymous online. Nearly all of these are made by clueless charlatans whose products put you at risk for privacy and security breaches. But your favorite hacker can just make or build an "Onion Pi" for $69.95, and with this free tutorial.

Attribution Dice
With Attribution Dice ($20), anyone can be a high-priced security consultant, and predict breach headlines before PR firms have a chance to feed them to reporters! With every security breach, hackers roll their eyes when headlines and PR firms roll out the same old, same old terms, methods and culprits. Instead of rolling eyes, your hacker can roll the dice, and wow friends, family, and neighbors with their hacker cyber-powers.
21 Bitcoin Computer
Money is always a welcome gift. Give the gift of going hands-on with Bitcoin with the 21 Bitcoin Computer. "The 21 Bitcoin Computer is ideal for buying and selling digital goods and services. You can use it to create bitcoin-payable APIs, set up your own personal digital goods store, pay people to share your content online, or host online games of skill." It's not cheap ($395) and comes with controversy, but it's a cool toy with a lot of potential, and 21 Inc. is going to be releasing an open source package for the device soon.
Gentleman's Bogota Lockpicks and Clear Practice Lock
Iemhacker-hacking-tutorial
Conventional wisdom suggests that all hackers know how to pick locks, but can they do it in style? A perfect stocking stuffer for slick hackers of all genders is the Gentleman's Bogota lockpick set ($34.95). These featherweights pin discreetly to a collar, hat, sleeve, vest, hemline, or wherever they choose. If the hacker you're shopping for wants to learn to lockpick, or just brush up on technique, throw in the clever Clear Practice Lock ($34.95).
Inverse Path USB Armory
Iemhacker-hacking-news-tutorial-hackernews
In this reviewer's opinion, every hacker should have a USB Armory in their stocking this year. The Inverse Path USB Armory ($130) is a little USB stick with an entire computer onboard (800MHz ARM processor, 512MB RAM), designed to be a portable platform for personal security applications — and lives up to its reputation as "the Swiss Army Knife of security devices."
Hack-A-Day Gift Card
The cornerstone of hacker culture Hack-A-Day has a store offering gift cards and merchandise a-plenty. In it, you'll find a Bukito portable 3D printer ($899.97), ever-popular Facedancer21 and Gootfet42, a low energy Bluetooth Arduino microcontroller called the Lightblue Bean, and the pocket-sized open source robot arm, Mearm.
Hackers 20th Anniversary Blu-Ray Edition
Hack the planet! The 20th anniversary of influential 1995 cyberpunk film "Hackers" was this year, and this cult classic got a special edition Blu-ray release, making it the must-have for the hackers in your life. The 20th anniversary "Hackers" Blu-ray features an hour-long "making of" documentary, rich video and audio transfer for the film itself, and interviews with: Cast members Matthew Lillard, Fisher Stevens, and Penn Jillette; hacking consultants Nicholas Jarecki and Emmanuel Goldstein; Director Iain Softley, and many more involved with the film's production and style.
A Hacker's hope for better sleep: The Re-Timer
Iemhacker-Top-10-Great-gifts-For-hackers
Hackers are increasingly hacking themselves to make their own systems run better, and one thing hackers struggle with is their sleep cycles and feeling rested. Something that can help out is the Re-Timer ($299), a retro-future looking set of glasses and kit that adjusts the circadian rhythm and suppresses the body's production of melatonin (the sleepy hormone our bodies produce which makes us feel tired). Based on 25 years of research and on the market worldwide for three years, the Re-Timer has its own jet lag calculator app, as well as its Sleep App for Fitbit that makes a customized schedule based on actual sleep tracked.
USB Rubber Ducky Deluxe and LAN Turtle
Iemhacker-USB-Rubber-ducky-delux-LAN-turtle
A longtime favorite with hackers, penetration testers and IT professionals, the USB Rubber Ducky Deluxe ($42.99)is a cross-platform (Windows, Mac, Linux, Android) testing and experimentation device that is detected as a keyboard — imagine the possibilities. This stocking stuffer pairs well with its animal friend LAN Turtle ($50), a covert sysadmin and pentest tool for remote access, network intel gathering, and man-in-the-middle monitoring through a simple graphic shell (all in a generic USB ethernet adapter case).
TechShop Gift Certificate
Iemhacker-Top-10-gifts-for-the-hacker
Give the gift of hacking and making: A gift certificate to a TechShop. "Part fabrication and prototyping studio, part hackerspace, and part learning center, TechShop provides access to over $1 million worth of professional equipment and software. We offer comprehensive instruction and expert staff to ensure you have a safe, meaningful and rewarding experience." There are TechShops in Arizona, California, Michigan, Missouri, Pennsylvania, Texas, and Virginia/Washington, D.C. (some states have multiple locations). Future locations include St. Louis, MO and Paris, France.
Products to avoid
If you see these products, run! You're better off with a lump of coal. Don't waste precious holiday money on "snake oil" privacy and security products like these:
  • Anonabox
  • Wemagin
  • Webcloak
  • iGuardian (now SHIELD)
  • LogMeOnce
  • Sever: The Anti-Villain Box
Related news

Probing For XML Encryption Weaknesses In SAML With EsPReSSO

Security Assertion Markup Language (SAML) is an XML-based standard commonly used in Web Single Sign-On (SSO) [1]. In SAML, the confidentiality of transferred authentication statements against intermediaries can be provided using XML Encryption [2]. However, implementing XML Encryption in a secure way can be tricky and several attacks on XML Encryption have been identified in the past [3] [4]. Therefore, when auditing a SAML endpoint, one should always consider testing for vulnerabilities in the XML Encryption implementation.

This blog post introduces our latest addition to the SAML Attacker of our BurpSuite extension EsPReSSO: the Encryption Attack tab. The new tab allows for easy manipulation of the encrypted parts within intercepted SAML responses and can, therefore, be used to quickly assess whether the SAML endpoint is vulnerable against certain XML Encryption attacks.


Weaknesses of XML Encryption

Implementations of XML Encryption can be vulnerable to adaptive chosen ciphertext attacks. This is a class of attacks in which the attacker sends a sequence of manipulated ciphertexts to a decryption oracle as a way to gain information about the plaintext content.
Falsely implemented XML Encryption can be broken using:
  • an attack against the CBC-mode decryption (quite similar to a padding oracle attack) [3] or
  • a Bleichenbacher attack against the RSA-PKCS#1 encryption of the session key  [4].
SAML makes use of XML Encryption and its implementations could, therefore, also be vulnerable to these attacks.

XML Encryption in SAML

To support confidential transmission of sensitive data within the SAML Assertion, assertions can be encrypted using XML Encryption. An EncryptedAssertion is shown in the abridged example below.

<EncryptedAssertion>
  <EncryptedData>
    <EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#aes128-cbc"/>
    <KeyInfo>
      <EncryptedKey>
        <EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>
        <CipherData>
          <CipherValue>
            [...]
          </CipherValue>
        </CipherData>
      </EncryptedKey>
    </KeyInfo>
    <CipherData>
        <CipherValue>
          [...]
        </CipherValue>
    </CipherData>
  </EncryptedData>
</EncryptedAssertion>

The EncryptedAssertion contains an EncryptedData element, which in turn is the parent of the EncryptionMethod, KeyInfo, and CipherData elements.  SAML makes use of what is referred to as a hybrid encryption scheme. This is done using a session key which symmetrically encrypts the payload data (the example uses AES-128 in CBC mode), resulting in the ciphertext contained in the EncryptedAssertion/EncryptedData/CipherData/CipherValue child element. The session key itself is encrypted using an asymmetric encryption scheme. In our example, RSA-PKCS#1.5 encryption is used with the public key of the recipient, allowing the contents of the the EncryptedKey child element to be derived from the KeyInfo element. 

Encryption Attacker

Our BurpSuite extension EsPReSSO can help detect vulnerable implementations with the newly integrated Encryption Attacker within EsPReSSO's SAML module.

Once a SAML response which contains an EncryptedAssertion has been intercepted, open the SAML tab, select the Attacks pane, and choose Encryption from the dropdown menu. This works in Burp's Proxy, as well as in the Repeater tool, and is depicted below.
As sketched out above, the symmetric session key is encrypted using the recipient's public key. Since the key is public, anybody can use it to encrypt a selected symmetric key and submit a valid encryption of arbitrary messages to the recipient. This is incredibly helpful because it allows us to produce ciphertexts that decrypt the chosen plaintexts. To accomplish this, one can purposefully send invalidly padded messages, or messages containing invalid XML, as a method to trigger and analyze the different reactions of the decryption endpoint (i.e, turning the endpoint into a decryption oracle). To facilitate these investigations, the new Encryption Attacker makes this process dead simple.
The screenshot above shows the essential interface of the new encryption tab:
At the top, the certificate used to encrypt the symmetric session key can be pasted into the text field. This field will be pre-filled automatically if the intercepted SAML message includes a certificate in the KeyInfo child element of the EncryptedData element. The Update Certificate checkboxes above the text area can be used to include the certificate in the manipulated SAML message.
In the Symmetric Key text field, the hexadecimal value of the symmetric session key can be set. Choose the asymmetric algorithm from the dropdown menu and click Encrypt key -- this will update the corresponding KeyInfo elements of the intercepted SAML message. 

The payload in the text area labeled XML data can now be entered. Any update in the XML data field will also be reflected in the hexadecimal representation of the payload (found on right of the XML data field). Note that this is automatically padded to the blocklength required by the symmetric algorithm selected below. However, the payload and the padding can be manually adjusted in the hex editor field.

Eventually, click the Encrypt content button to generate the encrypted payload. This will apply the changes to the intercepted SAML message, and the manipulated message using Burp's Forward or Go button can now be forwarded, as usual.

Probing for Bleichenbacher Oracles

Bleichenbacher's attack against RSA-PKCS1 v1.5 encryption abuses the malleability of RSA to draw conclusions about the plaintext by multiplying the ciphertext with adaptively chosen values, and observing differences in the received responses. If the (error-) responses differ for valid and invalid PKCS1 v1.5 ciphertexts, Bleichenbachers' algorithm can be used to decrypt the ciphertext without knowing the private key [6].

To determine whether or not a SAML endpoint is vulnerable to Bleichenbacher's Attack, we simply need to check if we can distinguish those responses received when submitting ciphertexts that are decrypted into invalidly formatted PKCS1 v1.5 plaintexts, from the responses we receive when sending ciphertexts that are decrypted into validly formatted plaintexts. 

Recall that PKCS1 v1.5 mandates a certain format of the encrypted plaintext, namely a concatenation of a BlockType 00 02, a randomized PaddingString (PS) that includes no 00 bytes, a 00 (NULL-byte) as delimiter, and the actual plaintext message. The whole sequence should be equal in size to the modulus of the RSA key used. That is, given the byte length k of the RSA modulus and the message length |m|, PS has the length |PS| = k - 3 - |m|. Furthermore, PKCS1 v1.5 demands that |PS| to be at least eight bytes long [5]. 

In SAML, the recipient's public key is usually known because it is published in the metadata, or even included in the EncryptedAssertion. For this reason, we do not need to fiddle around with manipulated ciphertexts. Instead, we simply submit a validly formatted RSA-PKCS1 v1.5 encrypted message and an encrypted message which deciphers into an invalidly formatted plaintext. As an example, assume an RSA public key of 2048 bits which we want to use to encrypt a 16 byte session key `01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10` (hexadecimal representation). |PS|$ is $2048/8 - 3 - 16 = 237, so a valid PKCS1 v1.5 plaintext, ready to be encrypted using `AA` for all 237 padding bytes, could look like the listing shown below.

00 02 AA AA AA AA AA AA AA AA AA AA AA AA AA AA
AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA 00
01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10
In the Encryption attack pane of EsPReSSO, ensure that the correct public key certificate has been added to the Certificate field. Insert a valid plaintext, such as the one above, into the Symmetric Key field and select Plain RSA encryption from the Algorithm drop down menu. Click the Encrypt button to compute the RSA transformation and apply the new EncryptedKey element to the intercepted SAML message. Now, submit the message by clicking Burp's Go or Forward button and carefully inspect the response.

Next, repeat the steps outlined above, but this time submit an invalid PKCS1 v1.5 message. For example, consider using an invalid BlockType of `12 34` instead of `00 02`, or replace the `00` delimiter so that the decryptor is unable to determine the actual message after decrypting the ciphertext. If you are able to determine from the recieved responses whether or not the submitted ciphertext decrypted into a valid PKCS1 v1.5 formatted plaintext, chances are high that the decryptor can be used as a Bleichenbacher oracle. Don't forget to take into account the actual XML data, i.e., the assertion encrypted with the new session key; by submitting valid or invalid XML, or by removing signatures from the SAML message or the assertion you may increase your chances of detecting differences in the returned responses.

Probing for Oracles in CBC-Mode Decryption

Another known attack on XML Encryption is aimed at the Cipher Block Chaining (CBC) mode, which can be used with the block ciphers AES or 3DES [2]. The attack is described in detail in this referenced paper [3] and is quite similar to Padding-Oracle attacks on CBC mode; the malleability of CBC mode encryption enables the attacker to perform a bytewise, adaptive manipulation of the ciphertext blocks which are subsequently sent to the decryptor. In most cases, the manipulated ciphertext will not decrypt to valid XML and an error will be returned. Sometimes, however, the plaintext will be parsed as valid XML, in which cases an error is thrown later on at the application layer. The attacker observes the differences in the responses in order to turn the decryptor into a ciphertext validity oracle which can be used to break the encryption.  Due to some particularities of the XML format, this attack can be very efficient, enabling decryption with about 14 requests per byte, and it is even possible to fully automate the process [7].

In order to determine if a particular SAML service provider is vulnerable to this attack, we can avoid the cumbersome ciphertext manipulation, if we are in possession of the decryptor's public key:
In the Encryption Attacker tab of EsPReSSO, add the public key certificate to the Certificate field (if necessary) and insert a symmetric key of your own devising into the  Symmetric Key text field. Select an appropriate RSA encryption method and click the Encrypt button to apply the new EncryptedKey element to the original SAML message. 

An XML message can now be inserted into the XML data text field. Select a CBC mode encryption algorithm and click Encrypt to apply the changes. As in the example above, press Burp's Go or Forward button to send the message and carefully inspect the response. Try sending invalid XML, e.g., by not closing a tag or using the `&` character without a valid entity and keep an eye open for differences in the returned responses. To manipulate the padding, the text field on the right side shows the hexadecimal representation of the plaintext, including the CBC padding. If you send a single block and set the last byte, which indicates the padding length to the blocksize, i.e. 16 or 0x10 for AES, the ciphertext should decrypt into an empty string and is generally considered "valid" XML.

Please refer to the original paper for more details, tips, and tricks for performing the actual attack [3]. 

Summary

The new XML Encryption attacker included in EsPReSSO can help security auditors to quickly assess if a SAML endpoint is vulnerable to known attacks against XML Encryption. To this end, the decryptor's public key is used in order to send suitable test vectors that can be provided in plaintext. Ciphertext manipulation is, therefore, not required. The actual process of decrypting an intercepted SAML message is, however, considered out of scope and not implemented in EsPReSSO.

In case you wonder how XML Encryption can be used in a secure fashion, here are some considerations [6]:
  • Always use an authenticated encryption mode such as AES-GCM instead of the CBC-mode encryption.
  • Using RSA-PKCS1 v1.5 within XML Encryption is particularly difficult to do in a secure manner, and it is recommended to use RSA with Optimal Asymmetric Encryption Padding (OAEP) instead [2].
  • Apply a digital signature over the whole SAML response, and ensure it is properly validated before attempting to decrypt the assertion. This should thwart the attack as a manipulated response can be recognized as such and should be rejected.
----------

More articles


HTTP Status Codes Command This Malware How To Control Hacked Systems

A new version of COMpfun remote access trojan (RAT) has been discovered in the wild that uses HTTP status codes to control compromised systems targeted in a recent campaign against diplomatic entities in Europe. The cyberespionage malware—traced to Turla APT with "medium-to-low level of confidence" based on the history of compromised victims—spread via an initial dropper that masks itself as

via The Hacker News
Continue reading

Save Your Cloud: DoS On VMs In OpenNebula 4.6.1

This is a post about an old vulnerability that I finally found the time to blog about. It dates back to 2014, but from a technical point of view it is nevertheless interesting: An XML parser that tries to fix structural errors in a document caused a DoS problem.

All previous posts of this series focused on XSS. This time, we present a vulnerability which is connected another Cloud Management Platform: OpenNebula. This Infrastructure-as-a-Service platform started as a research project in 2005. It is used by information technology companies like IBM, Dell and Akamai as well as academic institutions and the European Space Administrations (ESA). By relying on standard Linux tools as far as possible, OpenNebula reaches a high level of customizability and flexibility in hypervisors, storage systems, and network infrastructures. OpenNebula is distributed using the Apache-2 license.


OpenNebula offers a broad variety of interfaces to control a cloud. This post focuses on Sunstone, OpenNebula's web interface (see Figure 1).

Figure 1: OpenNebula's Sunstone Interface displaying a VM's control interface

Before OpenNebula 4.6.2, Sunstone had no Cross-Site Request Forgery (CSRF) protection. This is a severe problem. Consider an attacker who lures a victim into clicking on a malicious link while being logged in at a private cloud. This enables the attacker to send arbitrary requests to the private cloud through the victims browser. However, we could find other bugs in OpenNebula that allowed us to perform much more sophisticated attacks.

Denial-of-Service on OpenNebula-VM

At its backend, OpenNebula manages VMs with XML documents. A sample for such an XML document looks like this:
<VM>
   <ID>0</ID>
   <NAME>My VM</NAME>
   <PERMISSIONS>...</PERMISSIONS>
   <MEMORY>512</MEMORY>
   <CPU>1</CPU>
   ...
</VM>
OpenNebula 4.6.1 contains a bug in the sanitization of input for these XML documents: Whenever a VM's name contains an opening XML tag (but no corresponding closing one), an XML generator at the backend automatically inserts the corresponding closing tag to ensure well-formedness of the resulting document. However, the generator outputs an XML document that does not comply with the XML schema OpenNebula expects. The listing below shows the structure that is created after renaming the VM to 'My <x> VM':
<VM>
   <ID>0</ID>
   <NAME>My <x> VM</x>
      <PERMISSIONS>...</PERMISSIONS>
      <MEMORY>512</MEMORY>
      <CPU>1</CPU>
      ...
   </NAME>
</VM>
The generator closes the <x> tag, but not the <NAME> tag. At the end of the document, the generator closes all opened tags including <NAME>.

OpenNebula saves the incorrectly generated XML document in a database. The next time the OpenNebula core retrieves information about that particular VM from the database the XML parser is mixed up and runs into an error because it only expects a string as name, not an XML tree. As a result, Sunstone cannot be used to control the VM anymore. The Denial-of-Service attack can only be reverted from the command line interface of OpenNebula.

This bug can be triggered by a CSRF-attack, which means that it is a valid attack against a private cloud: By luring a victim onto a maliciously crafted website while logged in into Sunstone, an attacker can make all the victim's VMs uncontrollable via Sunstone. A video of the attack can be seen here:


Syarat-syarat untuk tulisan anda tersiar ialah, setiap satu posting perlu diletakkan tajuk, nama sebenar atau samaran, lokasi, tidak lebih 1000 patah perkataan dan setiap gambar hendaklah tidak lebih 300 kB. Kerjasama anda amat dihargai. Terima kasih.

Pengikut



Taman Perpaduan mula didiami pada tahun 1982 dan perpindahan masuk beramai-ramai bermula pada tahun 1983. Kebanyakan pembeli rumah pada waktu itu di Taman Perpaduan adalah kakitangan awam bidang keselamatan dan kakitangan Majlis Perbandaran Ipoh dengan harga RM25,000. Kawasan ini telah diteroka seawal 1896 untuk aktiviti penanaman kopi oleh seorang usahawan Cina bernama Leong Fee dari Pulau Pinang bersama FJB Dykes, seorang petugas mineral Inggeris sebelum dijadikan lombong bijih dan memberi pulangan yang paling tinggi untuk daerah Kinta pada tahun 1900an. Pada awal tahun 1970an lombong Tambun Mines telah memberhentikan operasi dan tanah lombong ini telah dikembalikan kepada kerajaan negeri Perak. Pada tahun 1978, Kerajaan Perak dengan usahasama Majlis Perbandaran Ipoh memulakan projek membina Taman Perpaduan di atas tanah ini. Hari ini, Taman Perpaduan mempunyai lebih 15,000 orang penduduk dan mempunyai lebih 6,000 orang pengundi berdaftar.